Разработан новый принцип передачи данных для 6G
Современные методы передачи сигналов с помощью электромагнитных волн приближаются к своему пределу. Это обусловлено повышающимся требованиям к скорости передачи данных. Большие возможности открывает использование оптического диапазона, а именно — орбитального углового момента света (OAM — orbital angular momentum).
Исследователи из Калифорнийского университета в Беркли нашли способ мультеплексирования — радикального увеличения объема передаваемых данных — с помощью дискретных закручивающихся лазерных лучей от антенн, состоящих из концентрических колец.
"Мы переживаем взрывной рост объемов данных в нашем мире, и каналы связи, которые у нас есть сейчас, скоро станут недостаточными. Технология, о которой мы сообщаем, преодолевает текущие ограничения емкости данных за счет характеристики света, называемой орбитальным угловым моментом. Впервые нами были напрямую мультиплексированы лазеры, излучающие искривленный свет, — приводятся в пресс-релизе университета слова руководителя исследования Бубакара Канте (Boubacar Kanté), доцент кафедры электротехники и компьютерных наук. — Это кардинально меняет правила игры с приложениями в области биологической визуализации, квантовой криптографии, высокопроизводительной связи и датчиков".
Распространенный пример мультиплексирования, или уплотнение каналов связи — передача нескольких телефонных разговоров по одному проводу. Но до сих пор существовали фундаментальные ограничения на количество когерентных скрученных световых волн, которые можно было мультиплексировать напрямую.
Исследователи создали в закрученных антеннах, диаметр которых равен человеческому волосу, световые вихри, аналогичные по структуре атмосферным торнадо. При этом эти компактные антенны, которые можно разместить на компьютерной плате, — топологические. Это означает, что они сохраняют свои свойства даже при скручивании или изгибе устройства.
"Световой вихрь с его бесконечными степенями свободы, в принципе, может поддерживать передачу неограниченного количества данных, — объясняет Канте. — Задача состоит в том, чтобы найти способ надежно произвести бесконечное количество лучей OAM. Никто никогда раньше не производил лучи OAM с такими высокими зарядами в таком компактном устройстве".
Чтобы создать топологическую антенну, исследователи использовали метод электронно-лучевой литографии, с помощью которого они сначала вытравили сетку на поверхности полупроводникового материала — сплава арсенида галлия и фосфида индия — соединения, которое широко применяется в фотонных устройствах, а затем прикрепили полученную структуру к поверхности железо-иттриевого граната.
По словам авторов, такая конструкция была необходима для поддержания явления, известного как фотонный квантовый эффект Холла — движения света в кольцах в одном направлении при приложении магнитного поля.
Приложив магнитное поле, перпендикулярное двумерной микроструктуре, исследователи успешно сгенерировали три лазерных луча OAM, движущихся по круговым орбитам над поверхностью."Раньше думали, что квантовый эффект Холла с магнитным полем можно использовать в электронике, но не в оптике, из-за слабого магнетизма существующих материалов на оптических частотах, — говорит ученый. — Мы первые показали, что квантовый эффект Холла работает и для света".
В ближайшее время ученые планируют приступить к разработке оптических антенн, использующих в качестве источника энергии электричество."Мы создали три лазера, увеличив скорость передачи данных в три раза, но в принципе нет ограничений на возможное количество лучей и объем передаваемых данных", — заключает Канте.